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ABSTRACT

The problem of computing the maximized
gust load for a nonlinear, closed-loop aeroelastic
aircraft is discussed. The Volterra theory of
nonlinear systems is applied in order to define a
linearized system that provides a bounds on the
response of the nonlinear system of interest. The
method is applied to a simplified model of an
Airbus A310.

INTRODUCTION

The design of an aircraft structure requires
an evaluation of the loads that the aircraft is
expected to encounter during its life cycle.
These include taxi, landing, maneuver, and
gust loads.  Aircraft manufacturers have
developed methods that are suitable for
certification of the aircraft by the U.S.
Federal Aviation Administration (FAA).
These methods are based on linear -principles
and are, therefore, limited to linear
mathematical models of the aircraft. For the
majority  of  situations, these linear
assumptions are valid and comply with
certification requirements’. Quite often,
however, additional improvements are made
to the aircraft to further extend its life cycle
such as maneuver load alleviation (MLA) and
gust load alleviation (GLA) systems. These
control systems transform the mathematical
model of the aircraft from an open-loop
(without any ML A or GLA) linear system to
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a closed-loop (with MLA or GLA) linear or
nonlinear system depending on the nature of
the MLA or GLA design®.

Computation of maximized, time-
correlated gust loads for a linear aeroelastic
aircraft  can be performed via the linear
matched filter theory (MFT) approach®. The
attractiveness of the MFT technique is its
computational efficiency as well as the
mathematical guarantees of maximality that
it provides. For nonlinear, closed-loop
aeroelastic aircraft, the linear MFT technique
iIs not directly applicable, although methods
have been investigated to address this
dssue*’.  These methods, which typically
involve an optimal search of some kind, can
be  computationally intensive and,
unfortunately, do not  provide the
mathematical guarantees that the linear MFT
technique offers.

The goal of this paper is to present a new
technique that introduces and applies
nonlinear system theoretic concepts to the
problem of predicting maximized gust loads
for a closed-loop, nonlinear, aeroelastic
aircraft. The contributions presented herein
include a generalization of the linear MET
technique to nonlinear systems, a proper
classification of the nonlinear nature of the
problem, and results for a simplified
mathematical model of a nonlinear, closed-
loop aeroelastic aircraft.

The paper begins with a description of
the problem including a generic  block
diagram of the system under investigation.
The nonlinear nature of the system is
dicussed in order to define appropriate
analyses techniques. Methodologies are then
introduced for linear (Matched Filter Theory,
MFT) and nonlinear (Volterra theory)
Systems.  The relationship between the
Volterra theory of nonlinear systems and
MFT is presented and a strategy for defining
a bounded (maximized) function for gust
loads is discussed. Results are presented for
a simplified aeroelastic state-space model of
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an Airbus A310° with a nonlinear gust load
alleviation system.

PROBLEM DESCRIPTION

The selection of a linear or nonlinear gust
loads analysis technique depends on the
nature of the system being investigated. If
the system consists of an open-loop, linear
state-space model of an aeroelastic vehicle,
then linear methods are applied. If the
system consists of a linear state-space model
of an aeroelastic vehicle with a linear
controller closing the feedback loop, then,
once again, linear methods are applied. If,
however, a nonlinear controller replaces the
linear controller in the closed-loop system,
then nonlinear analysis methods must be

employed. There  are  additional
configurations that include a nonlinear
acroelastic system, but that class of

configurations is beyond the scope of this
paper.

If the GLA system includes nonlinear
elements such as saturation or deadband
functions, then the GLA system is
nonlinear. However, since an actual GLA
system can be quite complex, a simplified
model has been established that can be used
for developing methods of a fundamental
nature®. Figure 1 is a schematic of the
general structure of the simplified model
which replaces a GLA system with a simple
nonlinear element. It should be restated that
the purpose of this simplification is to aid in
the development of new techniques and is not
meant to be representative of a realistic GLA
system. Details of a simplified Airbus A310
aeroelastic model used in the present research
are presented in a subsequent section.

The method presented in this paper
(subsequently referred to as the indirect
method) consists of a combination of
concepts and methodologies. The primary
objective behind this indirect method is to
define a linear bounding function (or system)
for the nonlinear system of interest. This
linear function (or system) thereby provides
an upper bound to the maximum responses
of the nonlinear system. In addition, because
this bounding system is linear, it can be used
in a matched filter theory analysis with
important  benefits and guarantees. A
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description of each of these various
components is a necessary first step towards
understanding the present approach. These
components include: 1). matched filter theory
(MFT) for linear systems; 2). Volterra theory
of nonlinear systems; and 3) zero-memory
nonlinear elements (ZMNLEs). The process
by which these various components are
applied defines the present method which is
described in a subsequent section.

REVIEW OF METHODS

Matched Filter Theory (MFT) for

Linear Systems

As background for the remainder of this
article, this section presents the key results
from Ref. 3, the original development of
MFT for computing maximized and time-
correlated gust loads for linear airplanes.

Figure 2 depicts the steps that must be
employed to implement MFT and illustrates the
intermediate and final products of the process.
Frequency-response-function representations of
atmospheric turbulence and airplane loads are
combined in series and represent the “known
dynamics” boxes in the figure. One-dimensional
Gaussian atmospheric turbulence with the von
Karman power spectrum is chosen. Load y is
the load to be maximized. Loads z, through z,
are the loads to be time-correlated with load y.
There are three major steps in the process:

Step 1 is the application of an impulse
function of unit strength to the combined linear
system, producing the impulse response of load

y.

Step 2 is the normalization of this impulse
response by its own energy, followed by its
reversal in time.

Step 3 is the application of this normalized
reversed signal to the combined linear system,
producing time histories of load y and time
histories of loads z;, through z,. Within the
time history of load y, the maximum value is
ymux'

For simplicity of discussion throughout this
article, these three steps will be referred to as
MFT. Within each step, significant results,
interpretations, and implications are as follows:

Within step 1, the impulse response of
atmospheric  turbulence is shown as an
intermediate quantity. The impulse responses of
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loads z, through z,
used.

Within step 2, the normalized reversed signal,
named the matched excitation waveform, now has
unit energy. MFT guarantees that there is no
other unit-energy excitation waveform that, when
applied to the combined linear system, will
produce a value of y larger than y,,. This
guarantee is a fundamental result of MFT.

Within step 3, the response of atmospheric
turbulence to the matched excitation waveform,
named the critical gust profile, has a given level
of probability. The responses of atmospheric
turbulence to all other unit-energy excitation
waveforms have the same given level of
probability. Load y is named the matched load,
and loads z; through z, are time-correlated with
load y. At each instant of time, the time history
of the matched load is proportional to the
autocorrelation function of load y from a
conventional random process analysis. At each
instant of time, the time histories of loads z,

can be computed but not

through z, are  proportional to their
corresponding  cross-correlation functions with
load y.

For more detailed information about the
application of MFT 1o the calculation of
maximized and time-correlated gust loads,
including background, theoretical development,
numerical  implementation, and  example
calculations, the reader is urged to consult Ref. 3.

Yolterra Theory
The Volterra theory was developed by

Volterra in 19307. The theory is based on
functionals, or functions of other functions,
and subsequently became a generalization of
the linear convolution integral approach that
is applied to linear time-invariant (LTI)
systems. The theory formulates the response
of a nonlinear, time-invariant system as an
infinite sum of multidimensional
convolution integrals of increasing order,
with the first term in the series being the
standard linear convolution integral. Each
multidimensional convolution integral in the
series has an associated kernel. The first-
order kernel is simply the linear unit impulse
response of the system and the higher-order
kernels are  multi-dimensional impulse
responses. This  infinite sum  of
multidimensional convolution integrals is
known as the Volierrra Series and it is well

3
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defined in both the time and frequency
domains. To date, the Volterra theory has
been applied primarily to nonlinear electrical
and electronic systems.

Wiener® contributed significantly to the
Volterra theory and, as a result, the theory is
currently referred to as the Volterra-Wiener
theory of nonlinear systems. Reference 9
presents a kernel identification technique
based on auto- and cross-correlation functions
that can be applied to nonlinear, time-
varying systems. The textbooks by Rugh!'
and Schetzen" and the work by Boyd, Chua,
and Desoer'” and several others'*'® provide
detailed descriptions of the Volterra-Wiener
theory and are highly recommended to the
interested reader.

The basic premise of the Volterra-Wiener
theory of nonlinear systems is that any
continuously-differentiable  (i.e., smooth)
nonlinear system can be modeled as an
infinite sum of multidimensional
convolution integrals of increasing order.
This infinite sum is known as the Volterra
Series and it has the form

y(O = hg + [hyt-7)u(r)dr +
0

(J; éhz([-‘[l,[" T2) U(Tl) U(Tz) dTldfz +...

+[ o Ry (=T e -7 U u(m)d Ty dT )+
0 0

ey

where y(t) is the response of the nonlinear
system to u(t), an arbitrary input; h, is the
first-order kernel or the linear unit impulse
response; h, is the second-order kernel, and h,
is the nth order kernel.

Inspection of Equation (1) reveals some
very interesting features that are characteristic
of the Volterra series. If the kernels of order
two and above are zero, then the response of
the system is linear and is completely
described by a linear unit impulse response
h(t) and the standard linear convolution
integral.

The higher-order kernels h, are the
responses of the nonlinear system to
multiple unit impulses, with the number of
impulses applied to the system equal to the
order of the kernel of interest : e.g., h, is the
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response of the nonlinear system to two unit
impulses applied at two varying points in
time, T, and t,. The mathematical definition
follows directly for the n" order kernels
although visualization of these functions can
become difficult for orders greater than three.
The nonlinear kernels are measures of the
relative influence of a particular nonlinear
term of the series on the system’s overall
time response, which is a measure of
nonlinearity. This is a temporal measure of
nonlinearity and is referred to as memory.
As a result, Volterra systems are referred to
as nonlinear sytems with memory. The
concept of memory is discussed in greater
detail in the discussion of the ZMNLEs.

One approach for obtaining Volterra
series representations of physical systems is
to assume that the system is a ‘'weakly'
nonlinear system. A system that is weakly
nonlinear is a system that is well defined by
the first few kernels of the Volterra series so
that the kernels greater than second or third
order fall off rapidly and are negligible.
Boyd, Tang, and Chua® mention some
physical systems that are accurately modeled
as weakly nonlinear systems including
electromechanical and electroacoustic
transducers and some biological systems. In
the present study, it is assumed that the
nonlinear , closed-loop aeroelastic system is
a weakly nonlinear, second-order system.
Although third-order kernels do need to be
identified in order to verify this assumption,
third-order analysis is beyond the scope of
the present study. Results are therefore,
limited to the identification of the second-
order kernel, or h,, so that Equation (1)
becomes

y) = hg + (j)hl(t-r) w(r)dr +

0

In the present study, these Volterra kernels
are identified using the same unit pulse
identification technique described in Refs. 20
and 21.

Since the Volterra series is a
generalization of the linear convolution
concept, and since the linear MFT technique
is based on the linear convolution concept,

j J‘hz(t‘rl,['rz) U(Tl) U(Tz) dTlde (2)
0
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the Volterra series can be viewed as a
framework for generalizing the MFT
technique to nonlinear systems. This is
discussed in a subsequent section of this

paper.

Zero-Memory Nonlinear Elements

(ZMNLEs)

In order to determine the applicability of
the Volterra theory to the present problem,
the nonlinear system of Figure 2 needs to be
classified with regard to the nature of its
nonlinearity. The only source of
nonlinearity is the nonlinear element (NLE)
in Figure 2. It is well known that saturation
and deadband functions are zero-memory
(memoryless) functions®. A zero-memory
function is a function with an instantaneous
response (output). That is, the output of a
zero-memory function depends only on the
present value of the input, regardless of
previous values of the input. An example of
a linear zero-memory function is y=5x where
the input is x and the output is y. If a series
of x values are input to this function, the
output due to one of those x values is the
same regardless of the order of the x values.
So for x=2, y=10 regardless of whether x=2
is the first x value, the last x value, or any
n" value in between. Therefore, the time-
correlation between input values is not
important. An example of a nonlinear zero-
memory function is y=2x*.

Simply stated, a system with memory is
a system that continues to respond after the
input has been removed (or set to zero).
Therefore, a system with memory will
exhibit an impulse response that is a
function of time whereas a zero-memory
system will exhibit an impulse response that
is single-valued. Since convolution is the
scaling and shifting of an impulse response
(memory function), the output of a system
with memory will be affected by the time-
correlation (relative ordering) of the input
values. Linear and nonlinear systems can be
classified as either zero-memory systems or
as systems with memory. Typically, zero-
memory systems are easier to analyze than
systems with memory.

An important  characteristic of zero-
memory nonlinear functions is that they can
be scaled linearly with the input. Scaling of
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a ZMNLE consists of two operations:
scaling of the appropriate characteristic of the
ZMNLE and scaling of the input function.
For a saturation function, for example, the
saturation level is referred to as the threshold
value. So if a saturation function is detined
with threshold values at +1, scaling of this
function by a factor of two would consist of
new threshold values at +2. Scaling of the
input function by a factor of two then
completes the scaling process. This process
is depicted in Figures 3(a) and 3(b). This
characteristic of ZMNLEs will be exploited
to develop the present methodology.

In addition to being zero-memory
functions, the ZMNLEs are also
discontinuous (or piecewise continuous).
Clearly these functions are piecewise linear
but a nonlinear effect is introduced when
input values switch back and forth between
the piecewise linear functions.  Formal
application of the Volterra theory requires the
smoothing of ZMNLEs so that the nonlinear
system under investigation is continuously
differentiable. This  smoothing s
accomplished via polynomial functions of
the lowest order sufficient to capture the
effects of the ZMNLE. The ZEro-memory
nature of these elements reduces the
polynomial smoothing process to a simple
curve-fitting  process. Polynomials of
various orders are defined for each ZMNLE
and compared with the original function to
guarantee accuracy. An important point to
be made is that the range of input amplitudes
to each ZMNLE needs to be defined prior to
any smoothing approximation. The range of
input amplitudes (abcissa values) should
exceed the maximum expected value in order
10 guarantee an accurate use of the curve fit.

COMPUTATIONAL PROCEDURE

The system of Fig. | is a nonlinear,
closed-loop system consisting of a linear
system with memory (aeroelastic vehicle)
and a ZMNLE representing a simplified
controller. The ZMNLE classifies the
system as being nonlinear, but its zero-
memory nature simplifies the nature of the
nonlinearity and, therefore, simplifies the
nature of the problem as well. Assuming an
appropriate smoothing of the ZMNLE (a
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requirement for Volterra theory), two options
exist for gust loads analysis of this system:
1). direct application of the MFT technique
to nonlinear systems via the Volterra theory;
or 2). an indirect approach that exploits the
scalability of ZMNLEs.

A direct application of the MFT
technique to a nonlinear system would be via
the Volterra theory of nonlinear systems.
Clearly, since the linear MFT technique
relies on the mathematical advantages of the
linear impulse response, a direct extension of
the linear MFT to nonlinear systems is via
the Volterra theory which relies on linear and
nonlinear impulse responses. This direct
application would involve the computation
of an appropriate number of Volterra kernels
of the system. The incremental contribution
of the higher-order (nonlinear) kernels to the
first-order autocorrelation function then can
be computed, resuiting in an autocorrelation
function that includes nonlinear effects. The
incremental contribution of the higher-order
kernels asymptotically approaches a limit.
This limit would be the maximized response
including nonlinear terms.  This direct
approach would be a direct extension of the
MFT to a nonlinear system. This direct
approach, however, could impose an
undesirable computational burden.

Alternatively, an indirect method is
presented that circumvents the computational
burdens of the direct approach mentioned
above. This indirect method consists of
three steps: 1). scaling of the original
nonlinear system, 2). computation of the
first-order (linearized) Volterra kernel of the
scaled nonlinear system, and 3). application
of MFT for linear systems using the kernel
(impulse response) from step 2. The basic
strategy consists of computing the first-order
kernel (linearized component ) for the scaled
nonlinear system and using this linearized
component in a linear MFT sense to provide
an upper bound to the original nonlinear
system of interest. A roadmap for this
indirect method is presented as Table 1,
which will be used as a guide to aid the
reader in understanding the method and the
results presented in the next section.
Reference to a step number corresponds to a
step outlined in Table |.

The nonlinear system of interest, hereby
referred to as the nominal system (Fig. 1) is
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transformed into a continuously-ditferentiable
nonlinear system by substituting the original
discontinuous ZMNLE with a smoothed-
version of the ZMNLE using a polynomial
curve fit (step 1). This smoothed system
(Fig. 4) is now suitable for analysis using
Volterra theory and can be defined using Eq.
(1). Truncation of the higher-order kernels
for this system would yield the first-order
(linearized) kernel (step 2). The first-order
kernel of this system alone, however, cannot
be used in a linear MFT analysis since the
contribution of the higher-order kernels
would be ignored. Recall that the guarantees
of the MFT are limited to linear systems
where the higher-order terms are, by
definition, zero. A direct application of the
nonlinear version of the MFT using Volterra
theory (as described above) is certainly
appropriate at this stage. The remaining
discussion and results, however, are limited
to the indirect method, the main focus of
this paper. Application of the direct method
is delayed to a future publication.

The next step in the indirect approach
(step 3) consists of the scaling process (Figs.
3a and 3b). Scaling of the nominal system
(Fig. 1) is achieved by scaling the input
(setting the gain at the input) and scaling the
threshold values of the ZMNLE by the same
amount. This scaled system (Fig. 5) is
guaranteed to yield linearly-scaled responses
of the nominal system. So that if the scale
factor is greater than one, then for any given
input, the response of the scaled system will
always be greater than the response of the
nominal system (by the scale factor). The
new (scaled) ZMNLE is then replaced with a
smoothed-version of the ZMNLE so that
Volterra theory can be applied to the scaled
system as well (step 4). Since the responses
from the scaled system will always bound
the responses from the nominal system, the
scaled system is referred to as the bounding
system (Fig. 6). This system can now be
defined using Eq. (1) as well. It is
important to mention that the kernels from
step 2 for the smoothed, nominal system are
ditferent from the kernels of the smoothed,
bounding systems from step 4 (Table 1).

An appropriate  bounding system is

provides an upper bound to the full nonlinear
response of the nominal system. This is
facilitated by the use of square wave inputs
which excite the entire frequency spectrum of
each system. Comparisons are made
between the full nonlinear response of the
nominal system (step 2) and the first-order
response of the bounding system (step 5).
Once the bounding system is defined, its
first-order impulse response can be used in a
MFT analysis.

Application of the aforementioned
technique to a simplified Airbus A310
aeroelastic model is presented in the next
section.

RESULTS

The Airbus A310 linear mathematical
model used in this study is a simplified
version of the complete math model of the
vehicle®. This symmetric aeroelastic model
consists of rigid body pitch and plunge
degrees of freedom in addition to first wing
bending (1.9 Hz), engine lateral (2.3 Hz), and
engine pitch/inner wing torsion (3.5 Hz)
degrees of freedom. All flexible modes are
assumed to have a structural damping of 3%.
The rigid body degrees of freedom were
removed to simplify the current analysis.

The output loads for this system include
engine lateral acceleration (g), wing bending
moment (Ib-ft), wing torque (Ib-ft), and
aircraft c.g. normal acceleration (g). External
inputs to the model include vertical gust
velocity, spoiler, and aileron deflections. For
the present analysis, the only input that is
investigated is the vertical gust velocity
input.

Steady state aerodynamics are assumed
and lift growth and gust penetration effects
are not modeled. The steady state
aerodynamics are defined for the following
flight condition:

Altitude = 25000 ft.

Mach =0.84
Veas = 571.9 fts (Vias = 854.3 ft/s)
Weight = 290000 1b

The nonlinear closed-loop system is defined by
the feedback of the normal acceleration signal
through a nonlinear element. A block diagram of

defined by selecting a scale factor such that
the first-order response (truncated Volterra
model) of the bounding system (step S)
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this mathematical model is presented as Figure
7. The ZMNLE for this example consists of an
offset saturation element with thresholds of 0 and
10 degrees.  An offset saturation function is a
saturation function that is offset from the origin.
This corresponds to simulation of a spoiler
surface. which can only be deflected in one
direction. A more detailed description of this
mathematical model can be found in Ref. 6. In
order to include a model of the gust system as
part of the overall analysis, consistent with
models used in previous MFT analyses, a von
Karman pre-gust filter is added to the system of
Figure 8. In addition, in order to scale the input
appropriately, a gain block has been placed at the
gust velocity input. The A and B state-space
matrices were discretized for a time step of 0.01
and all analyses were performed in discrete time.

Results for validation of the polynomial
smoothing process (Step 2) can be seen in Figure
8. Figure 8 is a comparison of the wing bending
moment reponses due to a square wave input (1
Hz, unit amplitude) for an offset saturation
function (thresholds of 0 and 20) in its original
discontinuous form and a smoothed version of
the function. As can be seen, the responses are
nearly identical. Although not presented here,
wing bending moment reponses due to a 1 Hz
square wave with double the amplitude
(amplitude=2.0) for the discontinuous and
smoothed offset saturation functions (same
thresholds) showed excellent agreement as well.

The scaling process using a scale factor of
two, applied to the ZMNLE of the system of
Figure 7, was evaluated by applying a square
wave input (1 Hz, unit amplitude) via the gust
velocity input and comparing the output wing
bending moment responses. Presented in Figure
9 is a comparison of wing bending moment
responses due to square wave inputs for an offset
saturation NLE. One response is due to a square
wave input (1 Hz, unit amplitude) for offset
saturation thresholds of 0 and 10. The second
response is due to a square wave input with
double the amplitude (amplitude=2.0) and for
offset saturation thresholds of 0 and 20. It is
clear that these responses are linearly related by a
factor of two. The scaling process is therefore
applicable to this complex system.

Once the smoothing and scaling have been
performed and  evaluated, Volterra  kernel
identification can be performed. As mentioned
previously, the goal is to define a scaled,
nonlinear system (bounding system) whose linear
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Volterra truncation (first-order kernel) can be used
to bound the full nonlinear response of the
nominal system. In this case, the nominal
system consists of the offset saturation with
thresholds of 0 and 10 and unit maximum input
amplitude. In order to define an appropriately
scaled system, the first-order kernel of the
bending moment response for the nominal
system is generated and presented as Figure 10.
The first-order kernel for the nominal system
(step 2) is seen to be numerically well-behaved,
exhibiting a decaying response.

The first-order kernel (Fig. 10) is convolved
with a square wave input and compared to the full
system response to the same square wave input.
This comparison is presented as Figure 11 where
it can be seen that the linear Volterra truncation
(first-order kernel) captures the dominant phasing
of the full nonlinear response  while
underpredicting the maximum peaks.  This
indicates that the scaled system needs to be scaled
so that its first-order kernel response is larger
than the response of the nominal (fully
nonlinear) response. A scaling factor of two was
chosen as a test value. This scale factor of two
translates to an offset saturation with thresholds
of 0 and 20 (double the original value of 10) and
a maximum input amplitude of two (double the
input gain).

The first-order kernel of the bounding
function (linear Volterra truncation of scaled
system, step 5) was then computed. This kernel
was convolved with the square wave input used
to generate the responses in Fig. 11. Shown in

‘Figure 12 is a comparison of the response shown

in Figure 11 with the added response due to the
first-order response of the bounding system. It
can be seen that the first-order response of the
bounding system bounds the nonlinear response
of the nominal system. More importantly, the
first-order kernel of the bounding system can be
used in a linear MFT analysis for determining
maximized and time-correlated loads. All the
guarantees and conveniences of the linear MFT
can be applied to the bounding function (first-
order kernel of the bounding system). Therefore,
the problem of predicting maximized gust loads
for an apparently complex nonlinear system has
been reduced to a simpler problem resulting in a
linear bounding function that can be used to
exploit powertul linear system techniques such as
MFT. This was made possible by the proper
classification of the nonlinear nature of the
system of interest,
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An important issue remaining o be
addressed, however, is  determination of an
optimal scaling factor "A" in Fig. 3b. In Figure
12, the scaling factor chosen resulted in peak
loads of the bounding system that are on the
order of 50% larger than the peak loads of the
nominal system. Thus for this example
problem, a scaling factor of 2.0 is obviously too
large, potentially leading to an overdesigned wing
structure. This is clearly an iterative process.
Since the scaling is arbitrary, the scale factor
could be reduced to a more appropriate level.
Additional research is required to address this
issue as well as issues regarding production
implementation (industry environment), multiple
nonlinearities, and direct application of MFT via
Volterra kernel autocorrelations.

CONCLUDING REMARKS

A method has been presented that provides a
linearized impulse response function that can be
used to bound the nonlinear response of a
nonlinear, closed-loop system for computation of
maximized and time-correlated gust loads. The
method is based on the Volterra theory of
nonlinear systems and exploits fundamental
properties of zero-memory nonlinear elements
such as saturation and deadband functions. The
method is computationally efficient and can
provide guaranteed bounds on the maximum
response of the nonlinear system. In addition,
linear matched filter theory (MFT) can be applied
to the linearized impulse response function
directly. Although the foundation for the method
has been defined, additional work is needed in
developing a production-level process.
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